AP® CHEMISTRY 2015 SCORING GUIDELINES

Question 7

$$HC_9H_7O_4(aq) + H_2O(1) \iff H_3O^+(aq) + C_9H_7O_4^-(aq)$$

The molecular formula of acetylsalicylic acid, also known as aspirin, is $HC_9H_7O_4$. The dissociation of $HC_9H_7O_4(aq)$ is represented by the equation above. The pH of 0.0100 $MHC_9H_7O_4(aq)$ is measured to be 2.78.

(a) Write the expression for the equilibrium constant, K_a , for the reaction above.

$$K_a = \frac{[H_3O^+][C_9H_7O_4^-]}{[HC_9H_7O_4]}$$

1 point is earned for the correct expression.

(b) Calculate the value of K_a for acetylsalicylic acid.

$$[H_3O^+] = 10^{-pH} = 10^{-2.78} = 1.66 \times 10^{-3} M$$

$$[H_3O^+] = [C_9H_7O_4^-] = 1.66 \times 10^{-3} M$$

$$[HC_9H_7O_4] = 0.0100 M - 1.66 \times 10^{-3} M$$

$$K_a = \frac{(1.66 \times 10^{-3})^2}{0.0100 - (1.66 \times 10^{-3})} = 3.3 \times 10^{-4}$$

1 point is earned for the correct $[H_3O^+]$.

1 point is earned for the value of K_a .

(c) An aqueous solution of aspirin is buffered to have equal concentrations of $HC_9H_7O_4(aq)$ and $C_9H_7O_4^-(aq)$. Calculate the pH of the solution.

$$pH = pK_a + \log \frac{[C_9H_7O_4^-]}{[HC_9H_7O_4]}$$
$$= -\log(3.3 \times 10^{-4}) + 0$$
$$= 3.48$$

1 point is earned for a pH consistent with the K_a calculated in part (b).