AP[®] CHEMISTRY 2009 SCORING GUIDELINES

Question 1 (10 points)

Answer the following questions that relate to the chemistry of halogen oxoacids.

(a) Use the information in the table below to answer part (a)(i).

Acid	<i>K_a</i> at 298 K
HOC1	2.9×10^{-8}
HOBr	2.4×10^{-9}

(i) Which of the two acids is stronger, HOCl or HOBr ? Justify your answer in terms of K_a .

HOCl is the stronger acid because its K_a value	One point is earned for the correct
is greater than the K_a value of HOBr.	answer with justification.

(ii) Draw a complete Lewis electron-dot diagram for the acid that you identified in part (a)(i).

H:Ö:Ü:	One point is earned for a correct diagram.
--------	--

(iii) Hypoiodous acid has the formula HOI. Predict whether HOI is a stronger acid or a weaker acid than the acid that you identified in part (a)(i). Justify your prediction in terms of chemical bonding.

HOI is a weaker acid than HOCl because the O–H bond in HOI is stronger than the O–H bond in HOCl. The lower electronegativity (electron-drawing ability) of I compared with that of Cl results in an electron density that is higher (hence a bond that is stronger) between the H and O atoms in HOI compared with the electron density between the H and O atoms in HOCl.	 One point is earned for predicting that HOI is a weaker acid than HOCl <u>and</u> stating that iodine has a lower electronegativity than chlorine and EITHER stating that this results in a stronger O–H bond in HOI OR
OR The conjugate base OCl ⁻ is more stable than Ol ⁻ because Cl, being more electronegative, is better able to accommodate the negative charge.	 stating that this decreases the stability of the OI[−] ion in solution.

AP[®] CHEMISTRY 2009 SCORING GUIDELINES

Question 1 (continued)

(b) Write the equation for the reaction that occurs between hypochlorous acid and water.

$HOCl + H_2O \rightleftharpoons OCl^- + H_3O^+$	
OR	One point is earned for the correct equation.
HOC1 \rightleftharpoons OC1 ⁻ + H ⁺	

- (c) A 1.2 *M* NaOCl solution is prepared by dissolving solid NaOCl in distilled water at 298 K. The hydrolysis reaction $OCl^{-}(aq) + H_2O(l) \rightleftharpoons HOCl(aq) + OH^{-}(aq)$ occurs.
 - (i) Write the equilibrium-constant expression for the hydrolysis reaction that occurs between $OCl^{-}(aq)$ and $H_2O(l)$.

$$K_b = \frac{[\text{HOC1}][\text{OH}^-]}{[\text{OC1}^-]}$$
 One point is earned for the correct expression.

(ii) Calculate the value of the equilibrium constant at 298 K for the hydrolysis reaction.

$K_b = \frac{K_w}{K_a} = \frac{1.0 \times 10^{-14}}{2.9 \times 10^{-8}} = 3.4 \times 10^{-7}$	One point is earned for the correct value with supporting work.
---	---

(iii) Calculate the value of $[OH^-]$ in the 1.2 M NaOCl solution at 298 K.

		[OCl ⁻]	[HOCl]	[OH ⁻]		
	initial value	1.2	0	≈ 0		
	change	-x	x	x		One point is earned for
	equilibrium value	1.2 - x	x	x		the correct setup.
K_{hyd} \Rightarrow ($K_{hyd} = 3.4 \times 10^{-7} = \frac{[OH^{-}][HOC1]}{[OC1^{-}]} = \frac{(x)(x)}{(1.2 - x)} \approx \frac{x^{2}}{1.2}$ $\Rightarrow (1.2)(3.4 \times 10^{-7}) = x^{2} \Rightarrow$				One point is earned for the correct answer with supporting calculations.	
x =	$x = [OH^{-}] = 6.4 \times 10^{-4} M$					

AP[®] CHEMISTRY 2009 SCORING GUIDELINES

Question 1 (continued)

- (d) A buffer solution is prepared by dissolving some solid NaOCl in a solution of HOCl at 298 K. The pH of the buffer solution is determined to be 6.48.
 - (i) Calculate the value of $[H_3O^+]$ in the buffer solution.

$[H^+] = 10^{-6.48} = 3.3 \times 10^{-7} M$ One point is earned for the correct value.	
--	--

(ii) Indicate which of HOCl(aq) or $OCl^{-}(aq)$ is present at the higher concentration in the buffer solution. Support your answer with a calculation.

$[\text{H}^+] = 3.3 \times 10^{-7} M \text{ and } K_a \text{ for HOCl} = 2.9 \times 10^{-8}$	
$K_a = \frac{[\mathrm{H}^+][\mathrm{OC1}^-]}{[\mathrm{HOC1}]}$	One point is earned for the correct
$2.9 \times 10^{-8} = \frac{(3.3 \times 10^{-7})[\text{OC1}^-]}{[\text{HOC1}]}$	answer with supporting buffer calculations.
$\frac{[\text{OCl}^-]}{[\text{HOCl}]} = \frac{2.9 \times 10^{-8}}{3.3 \times 10^{-7}} = 0.088 \implies [\text{HOCl}] > [\text{OCl}^-]$	