AP[®] CHEMISTRY 2006 SCORING GUIDELINES (Form B)

Question 1

 $C_6H_5COOH(s) \rightleftharpoons C_6H_5COO^-(aq) + H^+(aq) \qquad K_a = 6.46 \times 10^{-5}$

- 1. Benzoic acid, C_6H_5COOH , dissociates in water as shown in the equation above. A 25.0 mL sample of an aqueous solution of pure benzoic acid is titrated using standardized 0.150 *M* NaOH.
 - (a) After addition of 15.0 mL of the 0.150 *M* NaOH, the pH of the resulting solution is 4.37. Calculate each of the following.
 - (i) [H⁺] in the solution

$[\mathrm{H}^+] = 10^{-4.37} M = 4.3 \times 10^{-5} M$	One point is earned for the correct answer.
--	---

(ii) $[OH^{-}]$ in the solution

(iii) The number of moles of NaOH added

mol OH ⁻ = $0.0150 \text{ L} \times 0.150 \text{ mol } \text{L}^{-1} = 2.25 \times 10^{-3} \text{ mol}$	One point is earned for the correct answer.
--	---

(iv) The number of moles of $C_6H_5COO^-(aq)$ in the solution

mol OH ⁻ added = mol $C_6H_5COO^-(aq)$ generated, thus	One point is earned for
mol C ₆ H ₅ COO ⁻ (<i>aq</i>) in solution = 2.25×10^{-3} mol	the correct answer.

(v) The number of moles of C_6H_5COOH in the solution

$$K_{a} = \frac{[H^{+}][C_{6}H_{5}COO^{-}]}{[C_{6}H_{5}COOH]} \Rightarrow [C_{6}H_{5}COOH] = \frac{[H^{+}][C_{6}H_{5}COO^{-}]}{K_{a}}$$

$$[C_{6}H_{5}COOH] = \frac{(4.3 \times 10^{-5}M) \times \frac{2.25 \times 10^{-3} \text{ mol}}{0.040 \text{ L}}}{6.46 \times 10^{-5}} = 3.7 \times 10^{-2}M$$

thus, mol C₆H₅COOH = (0.040 L)(3.7 \times 10^{-2}M) = 1.5 \times 10^{-3} \text{ mol}
One point is earned for the correct answer.

© 2006 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

AP[®] CHEMISTRY 2006 SCORING GUIDELINES (Form B)

Question 1 (continued)

Alternative solution for part (a)(v):

 $pH = pK_a + \log \frac{[C_6H_5COO^-]}{[C_6H_5COOH]}$ $\Rightarrow pH - pK_a = \log [C_6H_5COO^-] - \log [C_6H_5COOH]$ $\Rightarrow \log [C_6H_5COOH] = \log [C_6H_5COO^-] - (pH - pK_a)$ $= \log (\frac{2.25 \times 10^{-3} \text{ mol}}{0.040 \text{ L}}) - (4.37 - 4.190)$ = -1.25 - 0.18 = -1.43 $\Rightarrow [C_6H_5COOH] = 10^{-1.43} = 3.7 \times 10^{-2} M$ thus, mol C_6H_5COOH = (0.040 L)(3.7 \times 10^{-2} M) = 1.5 \times 10^{-3} \text{ mol}

(b) State whether the solution at the equivalence point of the titration is acidic, basic, or neutral. Explain your reasoning.

At the equivalence point the solution is <u>basic</u> due to the presence	
of $C_6H_5COO^-$ (the conjugate base of the weak acid) that	One point is earned for the
hydrolyzes to produce a basic solution as represented below.	prediction and the explanation.
$C_6H_5COO^- + H_2O \rightleftharpoons C_6H_5COOH + OH^-$	

In a different titration, a 0.7529 g sample of a mixture of solid C_6H_5COOH and solid NaCl is dissolved in water and titrated with 0.150 *M* NaOH. The equivalence point is reached when 24.78 mL of the base solution is added.

- (c) Calculate each of the following.
 - (i) The mass, in grams, of benzoic acid in the solid sample

mol C ₆ H ₅ COOH	$I = (0.02478 \text{ L}) \times (0.150 \text{ mol OH}^{-} \text{ L}^{-1}) \times \frac{1 \text{ mol } \text{C}_{6}\text{H}_{5}\text{COOH}}{1 \text{ mol OH}^{-}}$	
mass C ₆ H ₅ COOH	= $3.72 \times 10^{-3} \mod C_6H_5COOH$ = $3.72 \times 10^{-3} \mod C_6H_5COOH \times \frac{122 \text{ g } C_6H_5COOH}{1 \mod C_6H_5COOH}$ = $0.453 \text{ g } C_6H_5COOH$	One point is earned for the correct answer.

© 2006 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

AP[®] CHEMISTRY 2006 SCORING GUIDELINES (Form B)

Question 1 (continued)

(ii) The mass percentage of benzoic acid in the solid sample

mass %
$$C_6H_5COOH = \frac{0.453 \text{ g } C_6H_5COOH}{0.7529 \text{ g}} \times 100$$

= 60.2% One point is earned for the correct answer.

© 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).