$$SO_2F_{2(g)} \longrightarrow SO_{2(g)} + F_{2(g)}$$

- 1) A 10.55 gram sample of SO₂F₂ liquid is placed in a sealed 1.50L container. The container is heated to 450K and the liquid first boils and then begins to break down according to the retain given above.
- a) If no decomposition had occurred what would be the pressure of the SO₂F₂ gas?

$$10.559 59 \frac{1}{5} \cdot \frac{1}{102.06} \cdot \frac{1}{9} = 0.10337 \text{ mol}$$

$$P = 0.1034.0.0821.450 = 2.55 \text{ atm}$$

b) The equilibrium constant for the decomposition at 450K, K_p, is 7.65•10-6. Write the equilibrium expression for the reaction.

c) Once the system reaches equilibrium what will be the partial pressure of SO₂F₂ r

remaking in the container?	sort t	Z 52	th Ze	5510 6 (4)(4)
			14 + 7.	65.10 6 = 42 65.10 6 = 42

d) What will be the total pressure in the container at equilibrium?

$$Ba^{2+}_{(aq)} + EDTA^{4-}_{(aq)} \le Ba(EDTA)^{2-}_{(aq)}$$
 $K = 7.7 \times 10^{37}$

- 2) Barium ions will react with the EDTA ion to for a complex according the the reaction given above. A student mixes a solution with an initial concentration of Ba(EDTA)2- of 0.0237M.
- A) Write the equilibrium expression for the reaction.

		/-	- LBaltDTA	
		~ ~	CB+2+2 C EDTA	(4-7 assume
	B) Wł	nat will be th	ne concentration of th	e barium ions in the solution at equilibrium?
	Bath	A EDTA"	- Ba (EDTA) 2	$7.7.10^{7} = \frac{(0.0237-x)}{(x)(x)}$
I	10	0	0.0237	(x)(x)
C	+8]	+X	-X	7.7102= 0.0237
E	X	X	0.0237-2	×2
				x2 0.0217
[R"	+):1.	7510	M	7.7.107
L'en				X= 1.75.10-5

$$2NH_{3(g)} + 2O_{2(g)} <==> N_2O_{(g)} + 3 \ H_2O_{(g)}$$

- 3) Ammonia(NH₃₎ will react with oxygen to form dinitrogen monoxide(N₂O) and water as shown above. Researchers fill a 2.50L reaction vessel with ammonia to a pressure of 1.50 atm and oxygen gas to a pressure of 1.00 atm at 25°C. After the reaction comes to equilibrium they measure the pressure of the N₂O to be 0.0385 atm.
- A) Write the equilibrium express for K_p .

B) Calculate the value of the equilibrium constant, K_p , at 25°C. $|ZNH_1| + 2Q = N_2O + 2HO$ $|K_1| + 2Q = N_2O + 2HO$ $|K_2| + 2Q = N_2O + 2HO$ $|K_3| + 2Q = N_2O + 2HO$ $|K_4| + 2Q = (0.0385)(0.1155)$ $|K_4| + 2Q = (0.0385)(0.1155)$