Ch. 6 AP Problem 10FZ (DA) CEHIZ +802 - 5CO2 + 6H20 B) Z. Sy Cother, Inol. 502 0.1734mol CO2 (785).V=0.1734.0.0821.298 V= 4.11L () 5.00 CsH12. <u>Inolletha</u> = 6.935.10 mol GH12 72.0969 243KJ = 3,50.10°KJ 6.935.10 mol $A) \frac{R_{uk}}{R_p} = \frac{\sqrt{M_p}}{\sqrt{M_{uk}}} \qquad R_{uk} = 2R_p \qquad 2 = \frac{\sqrt{72016}}{\sqrt{1107}}$ Month 4 = 18.09 4= 72.096 Month 4 = 18.09 4= 72.096 M.

Ch. 6 AP Problems 20FZ $(2A) \Delta H = [2\Delta H_{4Hu}] - [\Delta H_{4\alpha_{4}} + \Delta H_{4\mu_{0}}]$ -4665=[2-17.3]-[AH, Od, +-242] -46KJ=[-184.6]-AH +242 -46KJ= 57.4 - AHFOU AH, = 1.03.102 ht B) ; 0, + 0, -> OU2 $C) \Delta H_{fous} = [\frac{1}{2}(0=0) + (CI-CI)] - [2(0-CI)]$ 1.03·102=[1(418)+(243)]-Z(0-C1) 1.03·102= 492-2 (O-CI) -389=-2(0-(1) (0-c1)= 195KI A) Oxygen has a double bond while Cl2 has only a single bond. Bouble bonds are stronger and therefore hundrer to break because there are more e being shired between the atoms

AP[®] CHEMISTRY 2005 SCORING GUIDELINES (Form B)

Question 7

Substance	Combustion Reaction	Enthalpy of Combustion, ΔH°_{comb} , at 298 K (kJ mol ⁻¹)
H ₂ (g)	$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$	-290
C(<i>s</i>)	$C(s) + O_2(g) \rightarrow CO_2(g)$	-390
CH ₃ OH(<i>l</i>)		-730

Answer the following questions about thermodynamics.

(a) In the empty box in the table above, write a balanced chemical equation for the complete combustion of <u>one</u> mole of $CH_3OH(l)$. Assume products are in their standard states at 298 K. Coefficients do not need to be in whole numbers.

$CHOH(l) + \frac{3}{2}O(q) \rightarrow CO(q) + 2HO(l)$	One point is earned for the correct products.
$2^{O_2(g)} \rightarrow CO_2(g) + 2\Pi_2O(t)$	One point is earned for balancing the equation.

(b) On the basis of your answer to part (a) and the information in the table, determine the enthalpy change for the reaction $C(s) + H_2(g) + H_2O(l) \rightarrow CH_3OH(l)$.

Adding the following three equations,		
$C(s) + O_2(g) \rightarrow CO_2(g)$	-390 kJ mol^{-1}	One point is earned for
$\mathrm{H}_{2}(g) + \frac{1}{2}\mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2}\mathrm{O}(l)$	-290 kJ mol^{-1}	the correct equations.
$\operatorname{CO}_2(g) + 2\operatorname{H}_2\operatorname{O}(l) \rightarrow \operatorname{CH}_3\operatorname{OH}(l) + \frac{3}{2}\operatorname{O}_2(g)$	$+730 \text{ kJ mol}^{-1}$	One point is earned for the correct value of ΔH° .
yields this equation: $C(s) + H_2(g) + H_2O(l) \rightarrow CH_3OH(l)$	$+50 \text{ kJ mol}^{-1}$	

(c) Write the balanced chemical equation that shows the reaction that is used to determine the enthalpy of formation for one mole of $CH_3OH(l)$.

$C(s) + 2 H_2(g) + \frac{1}{2} O_2(g) \rightarrow CH_3OH(l)$	One point is earned for the correct equation.
--	---

Copyright © 2005 by College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

AP[®] CHEMISTRY 2005 SCORING GUIDELINES (Form B)

Question 7 (continued)

(d) Predict the sign of ΔS° for the combustion of H₂(g). Explain your reasoning.

ΔS° for the combustion of H ₂ (g) is negative. Both reactants are in the gas phase and the product is in the liquid phase. The liquid phase is much more ordered than the gas phase, so the product is more ordered compared to the reactants, meaning that	One point is earned for the correct sign of ΔS° .
ΔS° is negative. (Note: There are fewer moles of products than reactants, which also favors a more ordered condition in the products, but the difference in phases is the more important factor.)	One point is earned for a correct explanation.

(e) On the basis of bond energies, explain why the combustion of $H_2(g)$ is exothermic.

O–H bonds than is required to break one mole of H–H bonds explan and one-half of a mole of O–O bonds.	arned for the correct planation.
--	----------------------------------